Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Sci Total Environ ; 880: 163275, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-2306133

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic provided an unprecedented natural experiment, that allowed us to investigate the impacts of different restrictive measures on personal exposure to specific volatile organic compounds (VOCs) and aldehydes and resulting health risks in the city. Ambient concentrations of the criteria air pollutants were also evaluated. Passive sampling for VOCs and aldehydes was conducted for graduate students and ambient air in Taipei, Taiwan, during the Level 3 warning (strict control measures) and Level 2 alert (loosened control measures) of the COVID-19 pandemic in 2021-2022. Information on the daily activities of participants and on-road vehicle counts nearby the stationary sampling site during the sampling campaigns were recorded. Generalized estimating equations (GEE) with adjusted meteorological and seasonal variables were used to estimate the effects of control measures on average personal exposures to the selected air pollutants. Our results showed that ambient CO and NO2 concentrations in relation to on-road transportation emissions were significantly reduced, which led to an increase in ambient O3 concentrations. Exposure to specific VOCs (benzene, methyl tert-butyl ether (MTBE), xylene, ethylbenzene, and 1,3-butadiene) associated with automobile emissions were remarkably decreased by ~40-80 % during the Level 3 warning, resulting in 42 % and 50 % reductions of total incremental lifetime cancer risk (ILCR) and hazard index (HI), respectively, compared with the Level 2 alert. In contrast, the exposure concentration and calculated health risks in the selected population for formaldehyde increased by ~25 % on average during the Level 3 warning. Our study improves knowledge of the influence of a series of anti-COVID-19 measures on personal exposure to specific VOCs and aldehydes and its mitigations.


Subject(s)
Air Pollutants , COVID-19 , Volatile Organic Compounds , Humans , Aldehydes/analysis , Volatile Organic Compounds/analysis , Pandemics , COVID-19/epidemiology , Air Pollutants/analysis , Environmental Monitoring/methods
2.
Build Environ ; 236: 110280, 2023 May 15.
Article in English | MEDLINE | ID: covidwho-2306054

ABSTRACT

Personal cloud, termed as the difference in air pollutant concentrations between breathing zone and room sites, represents the bias in approximating personal inhalation exposure that is linked to accuracy of health risk assessment. This study performed a two-week field experiment in a naturally ventilated office during the COVID-19 pandemic to assess occupants' exposure to common air pollutants and to determine factors contributing to the personal cloud effect. During occupied periods, indoor average concentrations of endotoxin (0.09 EU/m3), TVOC (231 µg/m3), CO2 (630 ppm), and PM10 (14 µg/m3) were below the recommended limits, except for formaldehyde (58 µg/m3). Personal exposure concentrations, however, were significantly different from, and mostly higher than, concentrations measured at room stationary sampling sites. Although three participants shared the same office, their personal air pollution clouds were mutually distinct. The mean personal cloud magnitude ranged within 0-0.05 EU/m3, 35-192 µg/m3, 32-120 ppm, and 4-9 µg/m3 for endotoxin, TVOC, CO2, and PM10, respectively, and was independent from room concentrations. The use of hand sanitizer was strongly associated with an elevated personal cloud of endotoxin and alcohol-based VOCs. Reduced occupancy density in the office resulted in more pronounced personal CO2 clouds. The representativeness of room stationary sampling for capturing dynamic personal exposures was as low as 28% and 5% for CO2 and PM10, respectively. The findings of our study highlight the necessity of considering the personal cloud effect when assessing personal exposure in offices.

3.
Environ Sci Pollut Res Int ; 30(19): 55278-55297, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2288813

ABSTRACT

The transmission of pollutants in buses has an important impact on personal exposure to airborne particles and spread of the COVID-19 epidemic in enclosed spaces. We conducted the following real-time field measurements inside buses: CO2, airborne particle concentration, temperature, and relative humidity data during peak and off-peak hours in spring and autumn. Correlation analysis was adopted to evaluate the dominant factors influencing CO2 and particle mass concentrations in the vehicle. The cumulative personal exposure dose to particulate matter and reproduction number were calculated for passengers on a one-way trip. The results showed the in-cabin CO2 concentrations, with 22.11% and 21.27% of the total time exceeding 1000 ppm in spring and autumn respectively. In-cabin PM2.5 mass concentration exceeded 35 µm/m3 by 57.35% and 86.42% in spring and autumn, respectively. CO2 concentration and the cumulative number of passengers were approximately linearly correlated in both seasons, with R value up to 0.896. The cumulative number of passengers had the most impact on PM2.5 mass concentration among tested parameters. The cumulative personal exposure dose to PM2.5 during a one-way trip in autumn was up to 43.13 µg. The average reproductive number throughout the one-way trip was 0.26; it was 0.57 under the assumed extreme environment. The results of this study provide an important basic theoretical guidance for the optimization of ventilation system design and operation strategies aimed at reducing multi-pollutant integrated health exposure and airborne particle infection (such as SARS-CoV-2) risks.


Subject(s)
Air Pollutants , Air Pollution, Indoor , COVID-19 , Environmental Pollutants , Humans , Carbon Dioxide/analysis , SARS-CoV-2 , Respiratory Aerosols and Droplets , Particulate Matter/analysis , Air Pollutants/analysis , Motor Vehicles , China , Environmental Pollutants/analysis , Environmental Monitoring/methods , Air Pollution, Indoor/analysis , Environmental Exposure/analysis
4.
Sci Total Environ ; 874: 162540, 2023 May 20.
Article in English | MEDLINE | ID: covidwho-2275809

ABSTRACT

Auckland is a city with limited industrial activity, road traffic being the dominant source of air pollution. Thus, the time periods when social contact and movement in Auckland were severely curtailed due to COVID-19 restrictions presented a unique opportunity to observe impacts on pedestrian exposure to air pollution under a range of different traffic flow scenarios, providing insights into the impacts of potential future traffic calming measures. Pedestrian exposure to ultrafine particles (UFPs), was measured using personal monitoring along a customised route through Central Auckland during different COVID-19-affected traffic flow conditions. Results showed that reduced traffic flows led to statistically significant reductions in average exposure to UFP under all traffic reduction scenarios (TRS). However, the size of the reduction was variable in both time and place. Under the most stringent TRS (traffic reduction of 82 %), median ultrafine particle (UFP) concentrations reduced by 73 %. Under the less stringent scenario, the extent of reduction varied in time and space; a traffic reduction of 62 % resulted in a 23 % reduction in median UFP concentrations in 2020 but in 2021 similar traffic reductions led to a decrease in median UFP concentrations of 71 %. Under all scenarios, the magnitude of the impact of traffic reductions on UFP exposure varied along the route, with areas dominated by emissions from construction and ferry/port activities showing little correlation between traffic flow and exposure. Shared traffic spaces, previously pedestrianised, also recorded consistently high concentrations with little variability observed. This study provided a unique opportunity to assess the potential benefits and risks of such zones and to help decision-makers evaluate future traffic management interventions (such as low emissions zones). The results suggest that controlled traffic flow interventions can result in a significant reduction in pedestrian exposure to UFPs, but that the magnitude of reductions is sensitive to local-scale variations in meteorology, urban land use and traffic flow patterns.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Particulate Matter/analysis , Air Pollutants/analysis , Vehicle Emissions/analysis , Environmental Monitoring/methods , Air Pollution/analysis , Particle Size
5.
Int J Environ Res Public Health ; 20(4)2023 Feb 08.
Article in English | MEDLINE | ID: covidwho-2230757

ABSTRACT

The health risk of schoolchildren who were exposed to airborne fine and ultrafine particles (PM0.1) during the COVID-19 pandemic in the Jambi City (a medium-sized city in Sumatra Island), Indonesia was examined. A questionnaire survey was used to collect information on schoolchildren from selected schools and involved information on personal profiles; living conditions; daily activities and health status. Size-segregated ambient particulate matter (PM) in school environments was collected over a period of 24 h on weekdays and the weekend. The personal exposure of PM of eight selected schoolchildren from five schools was evaluated for a 12-h period during the daytime using a personal air sampler for PM0.1 particles. The schoolchildren spent their time mostly indoors (~88%), while the remaining ~12% was spent in traveling and outdoor activities. The average exposure level was 1.5~7.6 times higher than the outdoor level and it was particularly high for the PM0.1 fraction (4.8~7.6 times). Cooking was shown to be a key parameter that explains such a large increase in the exposure level. The PM0.1 had the largest total respiratory deposition doses (RDDs), particularly during light exercise. The high level of PM0.1 exposure by indoor sources potentially associated with health risks was shown to be important.


Subject(s)
Air Pollutants , Air Pollution, Indoor , COVID-19 , Humans , Child , Particulate Matter/analysis , Air Pollutants/analysis , Indonesia , Particle Size , Air Pollution, Indoor/analysis , Pandemics , Environmental Monitoring
6.
Atmosphere ; 13(5):694, 2022.
Article in English | ProQuest Central | ID: covidwho-1871034

ABSTRACT

PM2.5 concentrations in urban areas are highly variable, both spatially and seasonally. To assess these patterns and the underlying sources, we conducted PM2.5 exposure measurements at the adult breath level (1.6 m) along three ~5 km routes in urban districts of Mainz (Germany) using portable low-cost Alphasense OPC-N3 sensors. The survey took place on five consecutive days including four runs each day (38 in total) in September 2020 and March 2021. While the between-sensor accuracy was tested to be good (R² = 0.98), the recorded PM2.5 values underestimated the official measurement station data by up to 25 µg/m3. The collected data showed no consistent PM2.5 hotspots between September and March. Whereas during the fall, the pedestrian and park areas appeared as hotspots in >60% of the runs, construction sites and a bridge with high traffic intensity stuck out in spring. We considered PM2.5/PM10 ratios to assign anthropogenic emission sources with high apportionment of PM2.5 in PM10 (>0.6), except for the parks (0.24) where fine particles likely originated from unpaved surfaces. The spatial PM2.5 apportionment in PM10 increased from September (0.56) to March (0.76) because of a pronounced cooler thermal inversion accumulating fine particles near ground. Our results showed that highly resolved low-cost measurements can help to identify PM2.5 hotspots and be used to differentiate types of particle sources via PM2.5/PM10 ratios.

7.
Environ Sci Pollut Res Int ; 28(29): 39322-39332, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1549509

ABSTRACT

The objective of this study is to understand the effect of indoor air stability on personal exposure to infectious contaminant in the breathing zone. Numerical simulations are carried out in a test chamber with a source of infectious contaminant and a manikin (Manikin A). To give a good visual illustration of the breathing zone, the contaminant source is visualized by the mouth of another manikin. Manikin A is regarded as a vulnerable individual to infectious contaminant. Exposure index and exposure intensity are used as indicators of the exposure level in the breathing zone. The results show that in the stable condition, the infectious contaminant proceeds straightly towards the breathing zone of the vulnerable individual, leading to a relatively high exposure level. In the unstable condition, the indoor air experiences a strong mixing due to the heat exchange between the hot bottom air and the cool top air, so the infectious contaminant disperses effectively from the breathing zone. The unstable air can greatly reduce personal exposure to the infectious contaminant in the breathing zone. This study demonstrates the importance of indoor air stability on personal exposure in the indoor environment and provides a new direction for future study of personal exposure reduction in the indoor environment.


Subject(s)
Air Pollution, Indoor , Ventilation , Air Movements , Air Pollution, Indoor/analysis , Manikins
8.
Environ Res ; 202: 111711, 2021 11.
Article in English | MEDLINE | ID: covidwho-1313098

ABSTRACT

Black carbon (BC), an important indicator of traffic-related air pollution (TRAP) in urban environments, is receiving increased attention because of its adverse health effects. Personal exposure (PE) of adults to BC has been widely studied, but little is known about the exposure of young children (toddlers) to BC in cities. We carried out a pilot study to investigate the integrated daily PE of toddlers to BC in a city-state with a high population density (Singapore). We studied the impact of urban traffic on the PE of toddlers to BC by comparing and contrasting on-road traffic flow (i.e., volume and composition) in Singapore in 2019 (before the COVID-19 pandemic) and in 2020 (during the COVID-19 pandemic). Our observations indicate that the daily BC exposure levels and inhaled doses increased by about 25% in 2020 (2.9 ± 0.3 µg m-3 and 35.5 µg day-1) compared to that in 2019 (2.3 ± 0.4 µg m-3 and 28.5 µg day-1 for exposure concentration and inhaled dose, respectively). The increased BC levels were associated with the increased traffic volume on both weekdays and weekends in 2020 compared to the same time period in 2019. Specifically, we observed an increase in the number of trucks as well as cars/taxis and motorcycles (private transport) and a decline in the number of buses (public transport) in 2020. The implementation of lockdown measures in 2020 resulted in significant changes in the time, place and duration of PE of toddlers to BC. The recorded daily time-activity patterns indicated that toddlers spent almost all the time in indoor environments during the measurement period in 2020. When we compared different ventilation options (natural ventilation (NV), air conditioning (AC), and portable air cleaner (PAC)) for mitigation of PE to BC in the home environment, we found a significant decrease (>30%) in daily BC exposure levels while using the PAC compared to the NV scenario. Our case study shows that the PE of toddlers to BC is of health concern in indoor environments in 2020 because of the migration of the increased TRAP into naturally ventilated residential homes and more time spent indoors than outdoors. Since toddlers' immune system is weak, technological intervention is necessary to protect their health against inhalation exposure to air pollutants.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Adult , Air Pollutants/analysis , Air Pollution/analysis , Carbon , Child, Preschool , Communicable Disease Control , Environmental Exposure/analysis , Environmental Monitoring , Humans , Pandemics , Particulate Matter/analysis , Pilot Projects , SARS-CoV-2 , Singapore , Vehicle Emissions/analysis
9.
Environ Res ; 199: 111268, 2021 08.
Article in English | MEDLINE | ID: covidwho-1225235

ABSTRACT

Due to the airborne nature of viral particles, adequate ventilation has been identified as one suitable mitigation strategy for reducing their transmission. While 'dilution of air by opening the window' has been prescribed by national and international health agencies, unintended detrimental consequences might result in many developing countries with high ambient air pollution. In the present study, PM2.5 exposure concentration and probability of mortality due to PM2.5 in different scenarios were assessed. A COVID airborne infection risk estimator was used to estimate the probability of infection by aerosol transmission in various commuter micro-environments: (a) air conditioned (AC) taxi (b) non-AC taxi (c) bus and (d) autorickshaw. The following were the estimated exposure concentrations in the four types of vehicles during pre-lockdown, during lockdown, and lost-lockdown: AC taxi cars (17.16 µg/m3, 4.52 µg/m3, and 25.09 µg/m3); non-AC taxis: (28.74 µg/m3, 7.56 µg/m3, 42.01 µg/m3); buses (21.79 µg/m3, 5.73 µg/m3, 31.86 µg/m3) autorickshaws (51.30 µg/m3, 3.50 µg/m3, 75 µg/m3). Post-lockdown, the probability of mortality due to PM2.5 was highest for autorickshaws (5.67 × 10-3), followed by non-AC taxis (2.07 × 10-3), buses (1.39 × 10-3), and AC taxis (1.02 × 10-3). This order of risk is inverted for the probability of infection by SARS-COV-2, with the highest for AC taxis (6.10 × 10-2), followed by non-AC taxis (1.71 × 10-2), buses (1.42 × 10-2), and the lowest risk in autorickshaws (1.99 × 10-4). The findings of the present study suggest that vehicles with higher ventilation or air changes per hour (ACH) should be preferred over other modes of transport during COVID-19 pandemic.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Communicable Disease Control , Environmental Monitoring , Humans , India/epidemiology , Pandemics , Particulate Matter/analysis , Risk Assessment , SARS-CoV-2
10.
J Expo Sci Environ Epidemiol ; 31(3): 404-411, 2021 05.
Article in English | MEDLINE | ID: covidwho-1152829

ABSTRACT

Occupational disease and injuries are the 8th leading cause of death in the United States. Low-wage and minority workers are more likely to work in hazardous industries and are thus at greater risk. Within the small business sector, in particular, the health of low-wage and minority workers is threatened by a multitude of complex and interrelated factors that increase their risk for injuries, death, and even chronic disease. The COVID-19 pandemic has amplified these concerns, as many low-wage and minority workers are essential workers, and many small businesses are reopening with little to no guidance. The article describes work-related health risks and reviews current research on occupational and social ecological approaches to improving the health of minority and low-wage workers primarily employed by small businesses. We propose a conceptual framework that integrates the social ecological model with the hierarchy of controls to address work-related health among low-wage and minority workers specifically in the small business sector. Community-based strategies are recommended to engage small business owners and workers in efforts to address their immediate needs, while building towards sustainable policy change over time. These strategies are of particular importance as small businesses reopen in the ongoing pandemic.


Subject(s)
COVID-19 , Occupational Exposure , Humans , Pandemics , SARS-CoV-2 , Salaries and Fringe Benefits , Small Business , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL